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SUMMARY 

In recent years the QUICK finite difference scheme has been increasingly used in solving the advec- 
tion-diffusion equation, particularly for water quality modelling studies relating to coastal and estuarine 
flows. This scheme has the benefits of mass conservation, reasonably high accuracy and computational 
efficiency in comparison with many other higher-order-accurate schemes reported in the recent literature. 
A von Neumann stability analysis showed that the explicit QUICK scheme has a severe stability constraint 
which depends upon the diffusion coefficient. It can be proved that this scheme is numerically unstable for 
the case of pure advection. Various modified forms of the implicit QUICK scheme have been formulated and 
their numerical stability properties have been studied and analysed. The modified QUICK schemes 
considered have been tested for transient simulations for the cases of pure advection and of advection and 
diffusion in an idealized one-dimensional basin using three different initial boundary conditions: (a) a sharp 
front concentration gradient, (b) a Gaussian concentration distribution and (c) a plug source. Details of the 
comparisons between these modified schemes and with other typical second-order-accurate difference 
schemes are given, together with comparisons with the analytical solutions for each case. A two-dimensional 
version of the semi-time-centred QUICK scheme (ADI-QUICK), has also been applied to a two-dimen- 
sional test case using the standard AD1 technique and has been shown to be attractive in comparison with 
other comparable second-order schemes. 

KEY WORDS Advection Diffusion Finite difference schemes Numerical modelling Solute transport Stability 
Truncation error Computer applications 

INTRODUCTION 

In recent years much effort has been focused on numerically solving the advection-diffusion 
equation (ADE) with higher accuracy and computational efficiency for regions of high solute 
gradients. The transient one-dimensional source-free transport of a scalar mass or pollutant 
concentration S(x, t) in an open channel, where the water depth varies with both location x and 
time r ,  as for the case of tidal driven flow, can be modelled using the following form of the ADE:' 

as a(us) a as 
S;+dx=z(Da.). 

where u(x ,  t )  is the advection velocity and D ( x ,  t )  is the diffusion coefficient. It is now widely 
appreciated that whilst the first-order upwind difference scheme will not generate wiggles (or 
grid-scale oscillations) in regions of high solute gradients or discontinuities, the scheme will 
nonetheless give rise to excessive numerical diffusion and is therefore inadequate for practical 
applications. On the other hand, whilst the conventional second-order-accurate central difference 
schemes (such as the Crank-Nicolson (C-N) scheme,2 which has no numerical dissipation, and 
the Lax-Wendroff (L-W) ~ c h e m e , ~  which has no numerical diffusion but some higher-order 
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dissipation) give more accurate results with tolerable numerical diffusion for most studies, these 
schemes generally exhibit pronounced oscillations when applied to the ADE with relatively small 
diffusion coefficients. These oscillations can spread throughout the model domain and swamp the 
true numerical results4 or even produce only noise.' This effect is particularly pronounced in 
model simulations where steep gradients exist and is discussed in some detail by Leendertse.6 

Some second-order schemes such as Formm's scheme' and the minimax-characteristics 
method' can reduce these oscillations substantially using an explicit formulation. However, the 
numerical stability of these schemes requires that the Courant number (uAt/Ax) must be less than 
unity. Moreover, the advection and diffusion processes must be computed separately, thereby 
requiring additional computer resources. It is also interesting to note that Fromm's scheme and 
the minimax-characteristics method appear to be exactly the same in form and therefore produce 
exactly the same results. Consequently, only the minimax-characteristics method was used for 
comparative purposes in the present study. 

Hogarth el d9 have compared 12 different explicit and implicit finite difference schemes up to 
third-order accuracy and found that the theoretical order of accuracy had little effect on the 
results if the diffusion number (i.e. DAt/(Ax)') was not small. However, it is worth noting that the 
smallest diffusion number used in their study was 0.1 which is relatively large for water quality 
model studies in coastal and inland waters. For example, for a grid spacing of 100 m and a flow 
velocity of 0.5 m s-', with a Courant number and diffusion number of 0.5 and 0.1 respectively, 
this would lead to a diffusion coefficient of 10 m2 s-  ', which is generally an upper-bound physical 
value for such studies. Another higher-order-accurate scheme proposed for hydraulics simulation 
is the two-point fourth-order scheme by Holly and Preissmann." The idea of characteristics 
propagation and the Hermitian cubic polynomial representation for the scalar distribution within 
the computational domain was used and promising results were produced. I t  is, however, 
computationally more complicated and expensive for two-dimensional flows, where additional 
sets of equations are required to simulate not only the scalar quantity but also its spatial 
derivatives for the advection and diffusion processes. 

The QUICK (Quadratic Upstream Interpolation for Convective Kinematics) difference 
scheme, based upon assuming quadratic upstream interpolation rather than linear interpolation 
between the grid points," is third-order-accurate in space when used for a finite volume study 
and second-order-accurate for a finite difference model. This scheme does not treat the advection 
and diffusion processes separately and has been widely used for hydraulics and water quality 
studies in coastal and inland waters,12-15 many of which are multidimensional. The QUICK 
scheme is attractive for practical engineering applications since it is mass-conservative, reason- 
ably accurate, economical and relatively simple to implement and exhibits much weaker oscil- 
lations than the C-N second-order central difference scheme. These factors are particularly 
important for many practising and consulting engineers who rely heavily upon microcomputers 
for their model studies. The explicit QUICK representation of the ADE, as originally proposed 
by Leonard, is subject to a rather restrictive time step constraint which depends upon the grid 
spacing, the advection velocity and the diffusion coefficient. l 6  Unfortunately, as will be shown 
later, this version of the QUICK scheme can become unstable using the traditional von Neumann 
analysis for the case of pure advection. Leonard and Noye has also modified the QUICK scheme 
using an implicit formulation," although numerical tests reported herein showed that the 
resulting oscillations are little better than the C-N second-order central difference scheme. 
Two-dimensional and three-dimensional implicit QUICK-based formulations can also be found 
in the literature for unsteady flow studies using complicated and iterative solution proced- 
u r e ~ . ~ ~ * ' '  

The QUICKEST' scheme, on the other hand, is third-order-accurate both in time and space 
and generally gives better numerical results than the QUICK scheme in one-dimensional 
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numerical tests for a Courant number of less than unity for pure advection. However, it is 
interesting to note that a two-dimensional version of the QUICKEST scheme, extended directly 
from its one-dimensional form~lat ion, '~  produced unstable results for the case of pure advection 
for two-dimensional numerical tests for a uniform flow field with a constant Courant number 
(0.15) in both the x- and y-directions and a rotational flow field where the angular velocity was 
0.007 s- '. This one-dimensional stable but two-dimensional unstable phenomenon has also been 
proved analytically2' but is beyond the scope of this paper. 

The objective of this current study has therefore been to formulate and analyse various 
representations of the modified QUICK scheme which could overcome the stability problems of 
the explicit form and be applicable both to pure advection and to advection and diffusion. Also, 
accuracy and stability properties of each scheme have been investigated with regard to the scheme 
representation. In all, four modified forms of the implicit QUICK scheme have been formulated, 
with the numerical behaviour of each scheme being considered in some detail. The various forms 
of the QUICK scheme considered herein include (i) the forward explicit QUICK scheme, (ii) the 
fully time-centred implicit QUICK scheme, (iii) the backward implicit QUICK scheme, (iv) the 
semi-time-centred implicit QUICK scheme and (v) the semi-backward implicit QUICK scheme. 
The semi-time-centred QUICK scheme can easily be extended to two-dimensional applications 
based upon the AD1 technique and has also been compared in this study with the results obtained 
using the C-N central scheme and the minimax-characteristics method. 

FORMULATION O F  VARIOUS QUICK SCHEMES 

If we express the spatial difference terms in a forward explicit (a = 0), fully time-centred implict 
(a=O.5) or backward implicit (a= 1) representation with respect to time, the finite difference 
representations of equation (1) over a time step can be written as 

Sjn + + a ( ~ j n : t ~ ~  Sjn::/2 - ~ j n 2 : ~ ~  Sjn_+:12) - a [ y 3 = i l 2  (Sjn:: - Sjn + ') - yjn2:/2 (Sjn + - Sjn-tt )] 

= S ? - ( l - a )  ( ~ j n +  1/2 Sjn+ 112 - ~ j n -  1/2 Sjn- 1 1 2 ) + ( 1 - 4  Cry+ 112 (Sjn+ 1 -Sjn)-rjn- 112 (Sjn- Sjn- 113, 

where 

(2) 

~ j n +  =ujn+ 112 AtJAx and yjn+ 112 = D?+ 112 AtJAx2 (3) 

are the Courant and diffusion numbers respectively, with At the time step and A x  the grid size, n is 
the time step number and Sjn+ and ujn+ 112 are the concentration and velocity values respectively 
at grid po in t j+ t  at t = n A t ,  as illustrated in Figure 1. The value of Sjn+llz can be obtained by 
quadratic upstream interpolation, giving 

)(Sjn+l+Sjn)-~VzS~ if ~ j n + , ~ ~ > O ,  
s;+ 1/2={+ (sjn+ + sjn)-Qv'Sjn+ if u?+ 112 <0 9 

(4) 

in which 

v'sjn = sjn+ ' - 2s; + sjn- 1. ( 5 )  

The terms ~ j n z : ~ ~ ,  yjn++l'/2, Sjn:iI2 and V2S;+' correspond to those given in equations (3HS) at time 
level n+ 1. Although equatioin (2) appears to be central in space, the resulting finite difference 
scheme is actually biased upwind after substituting equation (4) into equation (2). By doing so and 
assuming for the purpose of this analysis that ujn+ 1/2 > O  and ujn- 1/2 >O, three different QUICK 
scheme representations can be obtained as follows: 
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Figure 1. Sketch of grid representation for the QUICK scheme 

(i) forward explicit QUICK scheme 

s;’ = s; - 4 [&;+ 112 (s;+ 1 + s;) - &;- 1 /2  (s; + s;- )] + Q (&;+ 112 v2s; - Ejn- 1 / 2 v 2  s;- 1 )  

+ r;+ 112 (Sin+ 1 - Sjn) - rjn- 1/2 (Si” - s;- l), (6) 

(ii) fully time-centred implicit QUICK scheme 
s; + -+a [ &;:;/2 (s;:: + s; + 1 )  - &;f :/2 (s; + 1 + s;:: )] - & (&;f :/2 v 2 s j ” +  1 -&;_+:,2 v2s;:: ) 

= s;--a [&;* 1/2  (s;+ 1 + S;)-&;- 112 (s; + s;- I ) ]  + & (&;+ 1/2  v 2 n  sj -&;- 1 / 2 v 2 s ; -  1 

r;- l /Z (s; - s;- 1 ), +--(SF r;+ 112 - S ! ) - -  
2 J + 1  I 2 

(iii) backward implicit QUICK scheme 

s;+ 1 -t 4 [&;f:,2 (Sj”:: + s; + 1 ) -  &;f:/2 (s;+ 1 + s;:: )] - Q (&;::/2 v2 s;+ 1 -&?+I  J -  1 /  

n + l  n + 1  - y;::/2 (s;:: - s;+ 1 )  + y;’:,2 ( S j  - sj- 1 ) = s;. 
The value of S;+ 1/2 obtained from equations (4) and ( 5 )  can be regarded as a combination of 

a linear interpolation and an upwind curvature adjustment. Including this term at the new time 
level n + 1 in the above-listed schemes (ii) and (iii) has resulted in quadridiagonal matrices for 
unidirectional flow and pentadiagonal matrices for directional flow. Although solving a pen- 
tadiagonal matrix can be very efficient as discussed later, it requires at least 2.4 times more 
arithmetic operations than those needed for a tridiagonal solver and also requires more working 
memory space. In many practical engineering studies it is often desirable to obtain reasonably 
accurate results using a minimum of computational effort. For example, in flow and water quality 
modelling in coastal waters simulations often involves long-term predictions of many water 
quality parameters. Hence, since the tridiagonal solver has proved to be the most efficient method 
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in dealing with implicit problems, it should be used whenever possible if the same magnitude of 
accuracy can be achieved. 

Following the method first suggested by Leonard," Falconer and Liu" represented the linear 
term in equation (4) at the new time level and the curvature term at the old time level when 
calculating the value of Sjn::12. This approach is equivalent to assuming that the curvature of the 
concentration distribution does not change much from time level n to n+ 1, i.e. V 2  S;+l x V 2 S ; ,  
giving. 

if u;,+:/~ > 0,  
J +  '/' - I 4 (s; + + s;:: - g v2s:- if u ~ , + : / ~  C O ,  

This representation enables two more schemes to be constructed which only result in tridiagonal 
matrices. These schemes include (for u;::,, >O):  

(9) 
+ ( S ;  + + S;,+,') - b v2S; S?+1 - 

(iv) semi-time Centred Implicit QUICK Scheme 

(s;::-s;+1) 
r;::/2 s; + 1 +a  [&;++:p cs;;: + s;+ 1)  - &;-+:/2 (s; + I + s;?: )] - ~ 

2 

(10) 
v;- 112 

-- (s; - s;- 1) +A[(&;+ 1/2 +&;::/2) v2 s; -(&;- 1/2 + &;f:,2) v2s;- 13,  

s; + 1 + 4 [&;::/2 ( S g :  + s; + 1)  - &;+:/2 (S?+ 1 + s;?:)] - y;::/2 (s,.:: - s; + 1) 

2 

(v) semi-backward implicit QUICK scheme 

+y;?:/2 (s;+ - S?-+l')= s; +g (&7::/2 v2 s;-&;-+:/2 v2s;- 1). (1  1 )  
Although other algorithms may also be formulated, such as that given by Leonard and 

Noye, l 7  the above-listed schemes (iHiii) include various representative forms of the 
QUICK algorithm; with schemes (iv) and (v) being the simplified forms of schemes (ii) and 
(iii) respectively. Another alternative to schemes (ii) and (iii) in order to preserve a tridiag- 
onal matrix is to set all values outside the tridiagonal region to the corresponding values at 
the previous time level. In doing so, however, a pronounced phase error was observed in all 
the numerical tests, giving rise to reduce accuracy. Hence this alternative formulation has 
not been considered further herein. In the following section the numerical stability and 
accuracy properties of each of the schemes listed above will be analysed in more detail. 

STABILITY AND ACCURACY ANALYSIS 

In analysing the numerial stability and accuracy of these various forms of the QUICK scheme, it 
is first convenient to assume that the flow velocity and the diffusion coefficients are constant, 
giving 

(12) &;::/2 = &;-+:,2 =&;+ 1,2 =&;- l ,2  = &>O,  y7::/2 = y;?:/2 = y;+ 1/2 = y;- 112 = y 20. 

Stability analysis 

The von Neumann method was used for the stability analysis in this study since, although the 
matrix method can include the boundary conditionhs on the overall stability of the scheme, 
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previous research in comparing these two methods of stability analysis has indicated that the 
classical von Neumann method is generally to be preferred, regardless of the type of boundary 
conditions." The Fourier components of S(x, t )  at locationj and time level n can be expressed as 

(13) s; = e n  e W h  

where <" is the amplitude of the Fourier component at nAt, k is the wave number and i=J( - 1). 
Defining 8= kAx, the numerical stability of a scheme requires that the amplification factor over 
one complete time step must satisfy the following condition for all possible values of e Z 2  

I G(@I = 15"' '/<"I  < 1 (14) 

Further to this requirement and following the von Neumann stability analysis procedure outlined 
in Reference 22, the amplification factor can be evaluated for each scheme as follows. 

For scheme (i) 

Gl(8)= 1 -~s in~(8 /2) -4ys in~(8 /2) - i~[ l+$  sin2(8/2)]sine (15) 

and 

IGl(e)lz= 1 - {~[2s in~(8 /2)+3~s in~(8/2) -4~-8ys in~(8 /2) ]  +8y[1 -2ysin2(8/2)]} sin2(8/2). 

Numerical stability requires that the term in braces in equation (16) must be greater than or equal 
to zero, giving 

(16) 

(8/PA) [ 1 - 27 sin' (8/2)] + 2 sin' (812)~ 1 -47 sin' (ep)] 
4 - 3 sin4 (e/2) &< 

where PA=I~l/y=lulAx/D is called the cell Peclet number or the cell Reynolds number. Two 
extreme conditions can be obtained from this equation, the first being the short-wavelength 
requirement when 8=n or k =  n/Ax, and the second being the cut-off long-wavelength restriction 
when 8+8* ( = 2n/N, where N is the grid number of the computational domain). The stability 
requirement of this scheme therefore becomes 

~ < m i n  {2-4y, 2/PA+(n/N)'[3-4y/1',-2y(n/N)~] }. (18) 

(19) 

It can be seen from this equation that the stable region of the (E, 7)-plane for scheme (i) depends 
upon the diffusion coefficient and is very small as illustrated graphically in Figure 2. It can also be 
noted from equation (19) that scheme (i) is numerically unstable when N+m for the case of pure 
advection, i.e. when y=O. For finite values of N the stability requirement for E is much less 
restrictive, based upon the cut-off long-wavelength conditionz3 given by equation (1 8). However, 
the stability requirement for E is still very severe, giving, for example, ~<0.00197 and 
~<0.0000789 for N-values of 50 and 250 respectively. This stability requirement is highly 
impractical for most flow and water quality applications in water engineering, since the number 
of grid cells employed in such studies is relatively large, with a typical two-dimensional model 
study including over 100 x 200 grid nodes. 

For the limiting case of N+m,  equation (18) thereby reduces to 

E < min [2 - 4y, J(2y)l. 

For scheme (ii) 
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Figure 2. Stable region of (y ,  &)-plane lor (A) the explicit QUICK, (B) the semi-time-centred QUICK and (C) the 
semi-backward QUICK schemes 

and 

(21) 

where IG2(8)12 < 1 is always maintained for any values of 8, y and E (recalling that 7 2 0  and E > O  
for all cases), so that scheme (ii) is unconditionally stable. 

8 y  sin’ (812) + 2~ sin4 (812) 
IG2(~)12=1-[1+2Ysin ( 8 / 2)+(~/2)s in~(8 /2) ]~  + ( ~ ~ / 4 ) [ 1  ++sin’(8/2)1~ sin% 

For scheme (iii) 

and 

Again we see that I G3(8))  ,< 1 is always maintained for any values of 8, y and E,  so that scheme 

For scheme (iv) 

(iii) is also unconditionally stable. 

(24) 
1 -~sin~(8/2)-2ysin~(8/2)-i(~/2)[1 +sinZ(8/2)]sin8 

‘4(@ = 1 + 2 y  sin2(8/2)+i(~/2)sin8 
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4y[2-~sin~(8/2)] sin’(8/2)+c[2-2E+Esin2(8/2)] sin4(e/2) 
1 + +j sin2 (e/2) + 4y2 sin4 (e/2) + E’ [ 1 - sin2 ( e p ) ]  sin’ (e/2) * 

, this scheme requires that 

4y [2 - E  sin4(e/2)] +e[2 - 2e + E  sin’ (ep)] sin’ (8/2) 30. 

Hence the stability constraint becomes 

From either y = O  in equation (25) or PA+ m in equation (27) we have the stability restriction for 
the case of pure advection that 

&< 1. (28) 

For scheme (v) 

1 - E sin4 (e/2) - i ( ~ / 2 )  sin e sin2 (e/2) 
1 + 4y sin’ (812) + ie sin 8 G#)= 

and 

I -~[2-~sin’(8/2)] sin4(e/2) 
“s(~) ’ ’  = [ I +  4y sin2 (e/2)]2 + e2 sin2 e 

The stability constraint of this scheme can be shown to be 

~ < 2 + 4 y  

for the case of advection-diffusion. 
The stable regions of the ( E ,  y)-plane for schemes (iv) and (v) are also shown in Figure 2, where it 

can be seen that the stability constraints for schemes (iv) and (v) for the case of advection and 
diffusion are less restrictive than those for pure advection. For the case of E C O  a similar analysis 
has been undertaken for all schemes and similar results obtained for (el. 

Truncation error 

In determining the accuracy of the various representations of the QUICK scheme highlighted 
herein, it is first worth noting that equations (6)-(8), (lo), and (1 1) represent the solution of the 
following modified transport equation for a constant advection velocity and a constant diffusion 
coefficient: 

as as a2s 
at ax ax’ -+ U-= D-+ TE 

where TE is a truncation error term. 
By carrying out a Taylor series expansion at  grid point j and time level n for the five schemes 

listed previously, the major truncation error term for each scheme (designated by the subscripts 
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1-5 respectively) is given as 
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AtU2 a2s 

TE2= ---+-(j-PA+$)$+O(At‘.Ax4), U A X ~ ~ ~ S  D A X ~  1 
24 ax3 16 

(33) 

(34) 

In comparing these schemes, it can be seen that the truncation error for schemes (iii) and (v) 
includes a numerical diffusion term with the numerical diffusion coefficient being 0.5Atu2, 
whereas schemes (ii) and (iv) do not exhibit numerical diffusion for the accuracy quoted. All these 
schemes are second-order-accurate in space for the current finite difference study, with schemes 
(ii) and (iv) also being second-order-accurate in time and schemes (i), (iii) and (v) only being 
firs t-order-accurate. 

It is worth pointing out that third-order accuracy in space can be achieved if the above QUICK 
schemes are used in the finite volume approach, based upon the assumption of a local quadratic 
distribution. To achieve third-order spatial accuracy for advection in the finite difference model, 
the factor of & in equations (4) and (9) needs to be replaced by 6 ,  thereby resulting in the 
third-order upwind difference scheme.24 

The leading error effects associated with schemes (i), (iii) and (v) are amplitude-based, whereas 
with schemes (ii) and (iv) phase error effects are more significant. Hence schemes (ii) and (iv), 
which are time-centred or semi-time-centred, would therefore be expected to produce more 
accurate results in terms of amplitude consistency than schemes (iii) and (v). It is also worth 
noting that schemes (iv) and (v) have an extra truncation error term of (u2Ax2At/l6)a4S/dx4 and 
(u2Ax2Ac/8) a4S/ax4 compared with those of schemes (ii) and (iii) respectively. These extra error 
terms result from the approximations of V2Sj”+ by V2Sj”, which are proportional to u&Ax3 and do 
not have primary effects on the computation results when the Courant number is relatively small. 
The forward explicit QUICK scheme has another disadvantage as well as the severe numerical 
stability constraint, in that the point-to-point transfer property of the scheme when E = 1 is not 
observed. Needless to say, this property is not obvious for implicit schemes, since linear systems 
must be solved simultaneously to obtain numerical results. 

NUMERICAL TESTS FOR IDEALIZED ONE-DIMENSIONAL BASIN 

Following the preceding analysis, the various modified forms of the implicit QUICK schemes 
were tested for the severest case of pure advection in an idealized one dimensional reach, of 250 
grid lengths (each of length Ax), such that any disturbance at the upstream side of the test reach 
would take loo0 time steps to propagate out of the reach completely for a chosen value of &=025,  
or 500 time steps for ~ = 0 5 .  Three idealized concentration gradients were considered (a) a sharp 
front concentration gradient with a change in concentration from zero to a maximum within 
a single grid length, (b) a Gaussian concentration distribution with a standard deviation of 3Ax 
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and (c) a plug source with an initial plug width of 8Ax. These initial conditions were set and 
centred at :to( = 1OAx) at the commencement of simulation, with the upstream boundary condi- 
tion being set to 

So for test case (a) 
0 for test cases (b) and (c), 

s;+'= 

and for a downstream boundary condition of 

s:+ = 0. (39) 
Advection-diffusion simulations using these three initial boundary conditions were also under- 
taken for a constant Courant number and a constant diffusion coefficient. Numerical test results 
of the modified schemes (ii)-(v) were also compared with other second-order schemes and the 
exact solutions for each test case. The exact solutions of the advection-diffusion equation for test 
cases (a) and (c) were given by van Genuchten and A l ~ e s , ~ '  with the exact solution for test case (b) 
being obtained by solving the diffusion equation for a moving origin propagating at the advection 
velocity. 

The standard Gauss elimination and back-substitution technique (Thomas algorithm26) was 
employed to solve the tridiagonal system for schemes (iv) and (v). However, schemes (ii) and (iii) 
required the solution of a quadridiagonal system for steady unidirectional flow and pentadiag- 
onal system for unsteady directional flow. The linear equation system was expressed in matrix 
form as 

1s = B, (40) 
in which the vector S={S;", S;+' ,  . , . , S;+'}T, B is a vector containing the corresponding 
terms associated with time level n on the right-hand side of equation (7) or (8), and the matrix 
1 contains only four or five non-zero diagonal elements depending upon the local flow directions. 
The standard LU decomposition method was used to solve equation (40) in two stages similar to 
that of the Thomas algorithm. The matrix 1 was decomposed into two matrices a and /?, with the 
matrix a containing non-zero lower triangular elements only and the matrix /? containing 
non-zero upper triangular elements only. Both matrices a and /? contained no more than three 
non-zero diagonal lines. In solving equation (40), the method is equivalent to determining firstly 
the vector T by solving the equation aT = B and secondly the vector S by solving the equation 
/?S=T,  since 

1s = (a/?)S = a(19S) = aT = B. (41) 

This solution method has been coded up efficiently with no more than 19N-29 arithmetic 
operations for a pentadiagonal system compared with 8N -7 for the tridiagonal system if the 
matrix 1 is of order N x N. 

Numerical simulation results for an advection velocity of 0.5 m s- ' and a grid spacing of 100 m 
are shown for each modified QUICK scheme respectively in Figures 3 and 4 for pure advection, 
in Figures 5 and 6 for a constant diffusion coefficient of 2 m2 s-  ( y  = 0-008) and in Figures 7 and 
8 for a diffusion coefficient of 8 m2 s - '  (y=OO32), with a Courant number of 0.20 for all cases. 

From the results it can be seen that schemes (iii) and (v) exhibited no wiggles but resulted in 
a relatively strong numerical diffusion effect, with the numerical diffusion coefficient being equal 
to Atu2/2 as compared to zero for schemes (ii) and (iv). The numerical diffusion effects associated 
with schemes (iii) and (v) would commonly be larger than the physical diffusion for water quality 
model studies, especially when the physical diffusion is relatively small and the Courant number 
large. For instance, under our test conditions the numerical diffusion coefficient was 5 m2 sL 
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when E =0*20, and 70.3 1 or 18.75 m2 s -  ' when E = 0.75 for an increase in the advection velocity or 
time step number respectively. Although these two backward schemes are considerably better 
than the first-order upwind scheme, they are still considered to be inadequate for practical 
modelling applications. Schemes (ii) and (iv), on the other hand, gave rise to more accurate results 
than the other two schemes-as to be expected from the previous analysis-but suffered from 
exhibiting some degree of grid-scale oscillations. The results showed that the amplitude of the 
undershoot and overshoot and the degree of the phase error associated with schemes (ii) and (iv) 
were about the same as those for the minimax-characteristics scheme and Fromm's method, both 
of which require separate computations for advection and diffusion. The undershoot and 
overshoot associated with schemes (ii) and (iv) appeared behind the advancing wave, in contrast 
to the minimax-characteristics scheme where the undershoot and overshoot were ahead of the 
wave. However, in general, schemes (ii) and (iv) are a considerable improvement, both in terms of 
the phase error and the amplitude of the grid-scale oscillations, over the second-order central 
difference representations (i.e. C-N and L-W) and the second-order implicit QUICK scheme," 
which behaves in a similar manner to a second-order central difference scheme as shown in 
Figures 3-6. Also, it can be seen that the grid-scale oscillations obtained using schemes (ii) and (iv) 
were considerably weaker for the advection and diffusion case for a relatively small diffusion 
number (0008), as shown in Figures 5-8, when compared with the predictions for pure advection 
only, as shown in Figures 3 and 4. Therefore the presence of physical diffusion not only enlarges 
the stability region for the implicit schemes but also reduces the grid-scale oscillations. Further- 
more, as the physical diffusion is increased, the grid-scale oscillations are reduced further and 
disappear completely for a diffusion coefficient of about 8 m2 s- (the diffusion number being 
0.032), as can be seen in Figures 7 and 8. In this case schemes (ii) and (iv) produce very accurate 
results which are almost identical to the exact solution. 

The difference in the predicted results between schemes (iii) and (v) was found to be negligible 
for both simulations with pure advection and with advection and diffusion and for all Courant 
numbers considered. On the other hand, although there was only a small difference between the 
predicted results for schemes (ii) and (iv) for the case of pure advection with a Courant number E of 
0.20, this difference was more pronounced when the Courant number was increased to 075 ,  as 
can be seen in Figure 9, with scheme (iv) showing slightly stronger oscillations than scheme (ii). 
The magnitude of these oscillations and the phase error were also increased for this severe test. 
Hence, from the point of view of accuracy, a smaller Courant number is always preferable for pure 
advection, although stable results will be obtained for larger Courant numbers for both the 
above-mentioned modified QUICK schemes. However, the difference between schemes (ii) and 
(iv) was unnoticeable when the Courant number was 0.75 and the diffusion coefficient was 
2 m2 s-  ', as shown in Figure 10, where the oscillations can be seen to have been greatly reduced. 
With stronger physical diffusion of 5 m2 s- ' ,  these oscillations vanished completely. In Figure 11 
the test results are shown for the application of these two modified schemes to the advection and 
diffusion case with E =  1.5 and y=O-195. The results are still reasonably accurate except for some 
degree of phase error, with the results obtained for the case of advection and diffusion being better 
than those obtained for pure advection only. 

NUMERICAL TEST FOR TWO DIMENSIONS 

On the basis of previous analyses it has been found that in general the pure advection case poses 
the most severe numerical test for any finite difference representation of the ADE. Thus, in testing 
the modified QUICK scheme for two dimensions, the analysis will be restricted to pure advection 
for a constant depth domain. The simplified governing two-dimensional advection equation can 
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be written as 

as a(us) a(us) -+- +-=0, 
at  ax ay 

where u(x, y, t) and u(x, y, t) are the advection velocities in the x- and y-directions respectively. 
As an example to illustrate the numerical properties of the QUICK scheme in two dimensions, 

a semi-time-centred ADI-QUICK formulation has been constructed based upon the AD1 
technique. The finite difference equation for this scheme, for the first half-time-step from t = nAt to 
t=(n+f)At, can be written as 

+ & (trZl'/':, j vf S! j -  tr?l'/':, j V,' SY- 1, j +  ~6 j+ 112 V: St j-qt j- 112 V: Sc j- 11, (43) 

where i and j are grid square locations in the x- and y-directions respectively, 5 and q are the 
Courant numbers in the x- and y- directions respectively and 

(44) 

(45) 

S:+ 1, - 2St + Sl- 1, if ui+ 1 1 2 ,  j> 0, 
S1,z.j- 2S7+,.j+S;j if ui+l lz , j<O, 

I Si: j +  - 2s: j +  + St if ui, j +  < O .  
S" I , J + 1  -2S! L J  .+S" 1 , J - l  -if ui, j+ 1/2>0, 

I v,"stj= 

v;stj= 

The stability requirement for this scheme, assuming a constant velocity with u =ui+ 1/2. 
- - - U ~ - ~ / ~ , ~ > O  and u = u i . j + 1 1 2 = u i , j - 1 1 2 > 0 ,  can be given as 

t + q < 2 .  (46) 
The test domain consisted of 100 x 100 grid cells (with Ax=Ay), with the velocity field being 

similar to that for an anticlockwise rigid-body rotation about the domain centre at  an angular 
speed of 2a radians in 1256 time steps. The co-ordinate system was taken as being a right-handed 
Cartesian system, with the bottom left and top right corners having coordinates of ( - 50, - 50) 
and (50, 50) respectively. Two initial conditions were considered with the same peak concen- 
trations of 50 mg L-': (a) a circular column source with a diameter of 9Ax and (b) a Gaussian 
distribution of a, = oy = 3-25Ax. The column diameter is chosen to be narrow, since practical 
studies for sea outfall contaminant distribution usually cover less than a few hundred meters of 
disposal area. However, it can be expected that a wider column would give better results, thus 
requiring a smaller grid size and more computation time. The initial non-zero concentration 
distribution was located at the centre of the cell (-20,O) at time t=O,  with the upstream 
boundary concentration being set to zero and the downstream boundary concentration being 
obtained by assuming zero derivatives. 

The results obtained after one and a half revolutions (i.e. t = 1884At) using the above scheme, 
the C-N second-order central scheme and the minimax-characteristics or Fromm's scheme for 
these two initial conditions are shown in Figures 12-14 respectively. Biquadratic profiles were 
used for both the ADI-QUICK scheme and the minimax-characteristics method. It is worth 
noting that the minimax-characteristics method needs 16 points (4 x 4) for two-dimensional 
interpolations, compared with seven points for unidirectional flow or nine points for directional 
flow for the ADI-QUICK scheme. It can be seen by comparing the results that the ADI-QUICK 
scheme produced tolerable levels of undershoot and overshoot, with the results being similar to 
those predicted for the one-dimensional test results. Similarly, the minimax-characteristics 
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Figure 12. Advection of (a) a column source and (b) a Gaussian distribution using the ADI-QUICK scheme in two 
dimensions 

scheme also produced overshoot and undershoot and the central scheme produced very severe 
oscillations which rapidly spread over the whole modelling domain. The degree of undershoot 
and overshoot for each scheme can be obtained by comparing the values of S,,, and Smin with the 
original peak and zero values for each scheme respectively for each figure. The quantity ZS/So 
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Figure 13. Advection of (a) a column source and (b) a Gaussian distribution using the C-N second-order central scheme 
in two dimensions 

gives the mass balance percentage, which is the percentage ratio of the total mass at the specified 
time step to the initial total mass. As can be seen from the results, the minimax-characteristics 
scheme performed poorly in terms of mass conservation when compared with the other schemes 
tested. Similar results were also obtained for a two-dimensioinal uniform flow field with constant 
velocities in both the x- and y-directions. 
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Figure 14. Advection of (a) a column source and (b) a Gaussian distribution using the minimax-characteristics scheme in 
two dimensions 

CONCLUSIONS 

The QUICK scheme can be written in a number of different finite difference forms when applied 
to slowly time-varying problems, with the various formulations having different numerical 
properties and computational efficiencies. The main findings of the analysis of five different 
representations of the QUICK scheme can be summarized as follows. 
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(i) The explicit forward difference QUICK scheme was shown to have a severe stability 
constraint for the ADE and became numerically unstable when applied to the pure advection 
transport equation. The backward and fully time-centred implicit QUICK schemes were uncon- 
ditionally stable, although they were also computationally inefficient compared with other 
formulations. The semi-backward and semi-time-centred implicit QUICK schemes had a stabil- 
ity constraint as given by equations (31) and (27) respectively. 

(ii) The backward and semi-backward implicit QUICK schemes were comparatively more 
diffusive than the fully time-centred or semi-time-centred QUICK schemes and were therefore 
considered to be inadequate for practical use, although they were still considerably more accurate 
than the first-order upwind difference scheme. 

(iii) The fully time-centred and semi-time-centred implicit QUICK schemes exhibited some 
degree of gird-scale oscillations in advection-dominant transport problems. However, these 
oscillations were found to be of a similar magnitude to those obtained for the minimax 
-characteristics and Fromm’s schemes for the test cases considered. These oscillations were found 
to be considerably improved compared with those obtained using the second-order central 
difference schemes and the second-order implicit QUICK scheme modified by Leonard and 
Noye,17 with both versions of the time-centred QUICK scheme presented in this study being 
more accurate. 

(iv) Two dimensioinal numerical tests for pure advection showed that the ADI-QUICK 
scheme was mass-conservative after a long-time simulation whereas the minimax-characteristics 
scheme was not. The ADI-QUICK scheme performed considerably better than the second-order 
central difference scheme and marginally better than the minimax-characteristics scheme in two 
dimensions. 

(v) The difference between the fully time-centred and semi-time-centred implicit QUICK 
schemes was negligible when the Courant number was relatively small or there was a minimum 
amount of physical diffusion. For such conditions the semi-time-centred implicit QUICK scheme 
was therefore preferable owing to its computational efficiency. 

(vi) Numerical tests also confirmed that physical diffusion improved the stability properties of 
all the finite difference schemes tested and also reduced the amplitude of grid-scale oscillations. 
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